
icLibFuzzer: Isolated-context libFuzzer for 
Improving Fuzzer Comparability

Yu-Chuan (Jason) Liang and Hsu-Chun Hsiao
National Taiwan University, Taiwan

2021 NDSS BAR Workshop



Motivation

libFuzzer is strong, yet it is seldom being compared 
with other academic papers.

libFuzzer

AFL++

QSYM

AFL

Angora

icLibFuzzer

22



Outline

● Background
● Comparability issues
● icLibFuzzer
● Evaluation
● Conclusion & future work

33



Outline

● Background
● Comparability issues
● icLibFuzzer
● Evaluation
● Conclusion & future work

44



Background – Fuzzing & libFuzzer

Generate input

Run fuzzing target

Collect information

● libFuzzer
○ a coverage-guided fuzzer
○ targets library functions
○ supports advanced instrumentation, 

e.g., CMP tracing & value profiling

● Fuzzing tries to trigger abnormal 
behavior of a target program. 

● Fuzzer is the fuzzing engine.

55



Background – example of libFuzzer’s advanced 
instrumentation (CMP tracing)

1 short int magic;

2 read(0, &magic, sizeof(short int));

3 save_compared_arguments();3 if (magic == 0x1234)

4 bug();4 if (magic == 0x1234)

5 bug();

input
\xab\xcd\xff

record
(0xabcd,0x1234)

input
\x12\x34\xff

66



Background – example of libFuzzer’s advanced 
instrumentation (value profiling)

1 short int magic;

2 read(0, &magic, sizeof(short int));
3 save_compared_distance();
4 if (magic == 0x1234)

5 bug();

input
\x12\x45

record
hamming(0x1245,0x1234)

discard

used to generate 
next input

not closer

closer

77



Background – 
libFuzzer’s in-process infrastructure

● Treats the fuzzing target as a 
callback function

● The fuzzer instance and fuzzing 
target share the same context 
(e.g., virtual memory space).
○ Pro: fast
○ Con: context pollution

Generate input

Run fuzzing target

Collect information

88



Outline

● Background
● Comparability issues
● icLibFuzzer
● Evaluation
● Conclusion & future work

9



Comparability issues – 
lack support of common metrics

● libFuzzer aborts immediately after the target crashes
● Cannot be evaluated using common metrics

○ E.g., code coverage, time to find all intended bugs, ...

● How prior work compares with libFuzzer
○ Uses the time-to-first-crash metric only
○ Compares on fine tuned datasets
○ Enables the ignore-crash mode

1010

limited comparison scope

context pollution problem



Comparability issues – context pollution

● libFuzzer’s ignore-crash mode restarts the fuzzer after 
each crash.

● It may produce wrong results due to context pollution.

● Context pollution may occur when
a. the fuzzing target depends on global variables.
b. memory leak exists in the fuzzing target.

11



Comparability issues – context pollution

a. When the fuzzing target depends on global variables: C/C++ 
programs may assume that global variables will be initialized before 
the main function starts.

optind == 1

Before 1st run

optind == 3

Before 2nd run 

Unexpected non-bug 
behavior

./fuzzing_target -f /tmp/log

12



Comparability issues – context pollution

b. When memory leak exists in the fuzzing target: Memory leak will 
persist and keep consuming the memory until libFuzzer crashes.

1st run
memory usage: 100 bytes
memory leaked: 8 bytes

2nd run
memory usage: 108 bytes
memory leaked: 8 bytes

3rd run
memory usage: 116 bytes
memory leaked: 8 bytes

1313



Outline

● Background
● Comparability issues
● icLibFuzzer
● Evaluation
● Conclusion & future work

1414



icLibFuzzer – forkserver infrastructure to avoid 
context pullution

Generate input

Command to run 
fuzzing target

Collect 
information

Wait for input

Fork and run 
fuzzing target

Collect information

IPC (PIPE)

IPC (shared memory)

Initialize main 
controller Initialize forkserver

CMP 
tracing

value 
profiling

1515



icLibFuzzer – structure packing for faster forking

struct CMP1[32];

struct CMP2[32];

struct ValueProfile[32];

0x600000

0x601000

0x602000

0x603000

0x604000

0x605000

struct CMP1[32];struct CM0x600000

0x601000

0x602000

0x603000

0x604000

0x605000

P2[32];struct Valueprofil[32]

Pack multiple data structure all-in-one to minimize 
memory size.

16



icLibFuzzer – in-process vs. forkserver

Fuzzer instance
in-process

forkserver

1st run of Fuzzing 
target
2nd run of Fuzzing 
target

Main controller forkserver
IPC

fork

1st run of Fuzzing 
target
2nd run of Fuzzing 
target
3rd run of Fuzzing 
target

● in-process is more fragile to context pollution
● in-process is faster than forkserver

1717



Outline

● Background
● Comparability issues
● icLibFuzzer
● Evaluation
● Conclusion & future work

1818



● AMD Ryzen Threadripper 2990WX 32-Core processor, 64 GB memory, Ubuntu 18.04.

Evaluation – setup

● Fuzzers

○ AFL (afl-clang-fast)

○ Honggfuzz

○ QSYM

○ Angora

● Run each binary eight times, without initial seed [1], each for 72 hours.
● Code coverage is calculated using llvm-cov.

[1] G. Klees, A. Ruef, B. Cooper, S. Wei, and M. Hicks, “Evaluating fuzz testing,” in ACM CCS, 2018.

1919



Evaluation – code coverage (1/3)
● icLibFuzzer outperforms 

most other fuzzers in this 
dataset.

2020



Evaluation – code coverage (2/3)

● Coverage keep growing stably 
after 24 hours
○ 24 hours is not enough

2121



Evaluation – code coverage (3/3)
● Angora does not perform as 

well as its original paper
○ possible reason: no initial 

seed

2222



Evaluation - speed difference

● icLibFuzzer is 4x to 50x slower than 
original libFuzzer on fuzzer-test-suite.

● icLibFuzzer runs almost as 
fast as AFL.

2323

executions per second on fuzzer-test-suite dataset

executions per second on real-world programs



Evaluation - structure packing

Structure packing halves the memory usage and double 
the speed.

2424



Evaluation - interesting phenomenon

Execution speed is highly 
related to the number of 
simultaneously fuzzing 
threads. [2]

[2] W. Xu, S. Kashyap, C. Min, and T. Kim, “Designing new operating primitives to improve fuzzing performance,” in ACM CCS, 2017.

2525



Outline

● Background
● Comparability issues
● icLibFuzzer
● Evaluation
● Conclusion & future work

2626



Conclusion 

● libFuzzer lacks support of common metrics, and suffer 
from context pollution.

● We propose icLibFuzzer, to improve comparability of 
libFuzzer

● icLibFuzzer may serve as another baseline in fuzzing 
research

2727



Future work
● The impact of initial seeds and how to 

choose them wisely
● How to speed up icLibFuzzer? Infrastructural or 

implementation wise?
● Cache-aware structure packing?

2828

Questions? 
NDSS Slack: @jason liang
Email: jasonliang30115@gmail.com
https://github.com/csienslab/icLibFuzzer

mailto:jasonliang30115@gmail.com
https://github.com/csienslab/icLibFuzzer


Reference
[1] G. Klees, A. Ruef, B. Cooper, S. Wei, and M. Hicks, “Evaluating fuzz testing,” in 
Proceedings of the 2018 ACM SIGSAC Conference on Computer and Communications 
Security, ser. CCS ’18. New York, NY, USA: Association for Computing Machinery, 2018, 
p. 2123–2138. [Online]. Available: https://doi.org/10.1145/3243734.3243804

[2] W. Xu, S. Kashyap, C. Min, and T. Kim, “Designing new operating primitives to 
improve fuzzing performance,” in Proceedings of the 2017 ACM SIGSAC Conference on 
Computer and Communications Security, ser. CCS ’17. New York, NY, USA: Association 
for Computing Machinery, 2017, p. 2313–2328. [Online]. Available: 
https://doi.org/10.1145/3133956.3134046

2929

https://doi.org/10.1145/3243734.3243804

