
Declarative,
Demand-Driven RE
Yihao Sun, Jeffrey Ching, and Kris Micinski
Syracuse University

• Motivation and Background

• Motivation and Background
• D3RE Design and Methodology

• Motivation and Background
• D3RE Design and Methodology
• Demo using D3RE to perform an RE task

• Motivation and Background
• D3RE Design and Methodology
• Demo using D3RE to perform an RE task
• Implementation

• Motivation and Background
• D3RE Design and Methodology
• Demo using D3RE to perform an RE task

• Motivation and Background
• D3RE Design and Methodology
• Demo using D3RE to perform an RE task
• Implementation
• Evaluation
• Reflection and Future Work

• D3RE only a prototype
• Clear limitations: data transfer, etc…
• Future: parallel relational-algebra

• D3RE only a prototype
• Clear limitations: data transfer, etc…
• Future: parallel relational-algebra

• D3RE only a prototype
• Clear limitations: data transfer, etc…
• Future: parallel relational-algebra
• Also: user studies for GUI
• Relevant related work: Ponce

• Motivation and Background
• D3RE Design and Methodology
• Demo using D3RE to perform an RE task
• Implementation
• Evaluation
• Reflection and Future Work
• Wrap-up / conclusion

• Prior work shows REs take an iterative approach:
• Overview
• Subcomponent Scanning
• Targeted Exploration

Unfortunately, no tool supports every phase,
so REs frequently swap between tools

A typical RE may use:
• IDA to disassemble / explore code
• Case-specific plugins (e.g., finding crypto)
• Decompiler when possible (sometimes impossible)
• angr for symbolic execution
• BAP to query properties

D3RE: Declarative, Demand-Driven Reverse Engineering

Our goal: enable arbitrarily-complex binary analysis that can be
selectively applied to segments of the binary

• Make it fast by implementing via Datalog (Soufflé)
• Make it useful by basing on ddisasm (Datalog Dissassembly)
• Make it interactive by hooking into Ghidra

The D3RE vision

• Currently: REs swap between IDA/Ghidra/… and case-specific
analysis tools

• Plugins: more interactive, but harder to scale
• IDA (/Ghidra/r2/…) AST not designed to enable high-
performance binary analysis
➡ Also, lacking facilities for analysis parallelism etc…

• In D3RE, user writes declarative rules in Datalog

mov_rax(EA) :-
 code(EA),
 instruction_get_src_op(EA,_,Op),
 op_regdirect_contains_reg(Op,"RAX").

“An instruction address EA is a move when it is code and its
direct operand contains RAX”

To use d3re (our tool), a user loads a binary into Ghidra and also
processes the binary using ddisasm

User can then interactively add additional rules (using the REPL, long-term
will replace with GUI) and visualize them via Ghidra

Script size (lines of code) of Ghidra script (Python) vs. d3re Datalog

Running time of Ghidra scripts vs. equivalent implementation in
d3re (all numbers in seconds).

Runtime of successive invocations to d3re with (C) and without (S)
rule caching.

• Motivation and Background
• D3RE Design and Methodology
• Demo using D3RE to perform an RE task
• Implementation

• We implemented d3re in Python
• Our metadatabase (daemon) calls out to Soufflé
• “First pass” calls out to ddisasm to cache initial EDB (extensional DB)
• User types in REPL to execute tasks / communicate w/ Ghidra
• Currently using ghidra_bridge to communicate with Ghidra

• Datalog is monotonic
• Handling non-monotonicity is possible in practice w/ restrictions

• d3re exploits monotonicity to cache DBs
• Runs / queries can make use of previously-calculated EDB

• Metadatabase tracks runs (programs + input DBs) to select “best” starting DB

D3RE theory

