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Motivation

○ Complicated targets require carefully crafted 
harnesses
● Analyzing fuzzer’s behavior is difficult
● Often, development stops when fuzzing begins

○ But: human needs to stay in the loop
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Goals

○ Provide deep insight into whole fuzzing queues 
(thousands of executions)

○ Find limitations of your fuzzer/harness
More concrete:
find interesting conditional jumps  the 
fuzzer is not able to overcome (frontiers)

=> human-in-the-loop can use insights to
      improve fuzzer, mutator, and harness
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The JMPscare Toolkit

1. Trace Collection
2. Analysis
3. Disassembler Plugin



Trace Collection

○ Operates on simplistic execution trace:
⇒ one address per line

○ Can be e.g., collected during emulation

○ We offer plug-and-play solutions for unicornafl
● Python library
● Rust crate
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Automated Frontier Analysis 

○ Determines 
● which conditional jumps were taken 
● which basic blocks were reached

○ Efficiently cross-analyzes thousands of traces
○ Result: list of unidirectional jumps which were 

traversed, but always or never taken

○ Supports x86_64, MIPS, and 32 bit ARM (incl. thumb2)
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Potential New 
Coverage 
Analysis 

○ Heuristic for 
impact/interestingness 
of frontier

○ Traverse edges N times, 
count unseen Blocks

○ User-defined weighting 
for unresolvable function 
calls (blx r3)
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Analysis Output File

○ Details about all road-block jumps
● Address
● Condition
● Whether it is taken always or never
● PNC score

0x1172 CONDITION_LT NEVER_TAKEN 15

10



Binary Ninja 
Plugin



Binary Ninja Plugin (cont.)

○ Concise overview of frontier details

○ Highlights blocking instructions in disassembly

○ Facilitates Forced Execution by auto-patching 
(through branch inversion)
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Complete Pipeline
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Frontiers and Basic Block Classification

1) Reached. 

2) Reachable. Fuzzer has capabilities to reach 
block in a reasonable time (find long path, 
input satisfying a certain condition...)

3) Reachable Behind Frontier. Path exists, 
unreasonable amount of time required (CF 
altering state becomes too complex, e.g., deeply 
nested structs with multiple pointer 
indirections). Manual aid required.
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4)   Reachable Altering Precondition.  Control flow 
       to block exists, but hidden behind state 
       that cannot be changed by mutating the input.

Solutions: change harness, use different snapshot

5)   Unreachable.

Frontiers and Basic Block Classification (cont.)
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Evaluation
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● BaseSAFE fuzz queue (MediaTek Helio X10 ARM firmware)
● 5902 inputs
● 5860 executed instructions on average
● 4.16 million jumps

○ 1099 unique
○ 270 frontiers



○ Growth stagnates after initial 
increase

● more and more difficult for 
fuzzer to find new 
coverage yielding inputs

17



○ Additional execution traces 
=> more coverage
=> more jumps

○ Tipping point: 
more condition-switching 
inputs than previously 
unknown jumps are found
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○ Low number of traces 
=> only marginal coverage
=> every new observed frontier 
may lead to huge new program 
part

○ Increased coverage
=> earlier termination during 
traversal of unseen edges 
(PNC analysis)
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Conclusion

○ JMPscare provides insights into the queue
○ It finds explorable parts of the binary
○ Which helps the tester to improve their harness

Open Source at
https://github.com/fgsect/JMPscare
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while (questions());

char buf[16];
strncpy(buf, ""
    "Thank you for your attention."
    "\n", sizeof(buf));
printf("%s", buf);


