
JMPscare
Introspection for Binary-Only Fuzzing

4th Workshop on Binary Analysis Research
San Diego, USA (Virtual Event)

 Dominik Maier & Lukas Seidel

JMPscare
Introspection for Binary-Only Fuzzing

Motivation

○ Complicated targets require carefully crafted
harnesses
● Analyzing fuzzer’s behavior is difficult
● Often, development stops when fuzzing begins

○ But: human needs to stay in the loop

3

Goals

○ Provide deep insight into whole fuzzing queues
(thousands of executions)

○ Find limitations of your fuzzer/harness
More concrete:
find interesting conditional jumps the
fuzzer is not able to overcome (frontiers)

=> human-in-the-loop can use insights to
 improve fuzzer, mutator, and harness

4

The JMPscare Toolkit

1. Trace Collection
2. Analysis
3. Disassembler Plugin

Trace Collection

○ Operates on simplistic execution trace:
⇒ one address per line

○ Can be e.g., collected during emulation

○ We offer plug-and-play solutions for unicornafl
● Python library
● Rust crate

6

Page 7

Automated Frontier Analysis

○ Determines
● which conditional jumps were taken
● which basic blocks were reached

○ Efficiently cross-analyzes thousands of traces
○ Result: list of unidirectional jumps which were

traversed, but always or never taken

○ Supports x86_64, MIPS, and 32 bit ARM (incl. thumb2)

8

Potential New
Coverage
Analysis

○ Heuristic for
impact/interestingness
of frontier

○ Traverse edges N times,
count unseen Blocks

○ User-defined weighting
for unresolvable function
calls (blx r3)

9

Analysis Output File

○ Details about all road-block jumps
● Address
● Condition
● Whether it is taken always or never
● PNC score

0x1172 CONDITION_LT NEVER_TAKEN 15

10

Binary Ninja
Plugin

Binary Ninja Plugin (cont.)

○ Concise overview of frontier details

○ Highlights blocking instructions in disassembly

○ Facilitates Forced Execution by auto-patching
(through branch inversion)

12

Complete Pipeline

13

Frontiers and Basic Block Classification

1) Reached.

2) Reachable. Fuzzer has capabilities to reach
block in a reasonable time (find long path,
input satisfying a certain condition...)

3) Reachable Behind Frontier. Path exists,
unreasonable amount of time required (CF
altering state becomes too complex, e.g., deeply
nested structs with multiple pointer
indirections). Manual aid required.

14

4) Reachable Altering Precondition. Control flow
 to block exists, but hidden behind state
 that cannot be changed by mutating the input.

Solutions: change harness, use different snapshot

5) Unreachable.

Frontiers and Basic Block Classification (cont.)

15

Evaluation

Page 16

● BaseSAFE fuzz queue (MediaTek Helio X10 ARM firmware)
● 5902 inputs
● 5860 executed instructions on average
● 4.16 million jumps

○ 1099 unique
○ 270 frontiers

○ Growth stagnates after initial
increase

● more and more difficult for
fuzzer to find new
coverage yielding inputs

17

○ Additional execution traces
=> more coverage
=> more jumps

○ Tipping point:
more condition-switching
inputs than previously
unknown jumps are found

18

○ Low number of traces
=> only marginal coverage
=> every new observed frontier
may lead to huge new program
part

○ Increased coverage
=> earlier termination during
traversal of unseen edges
(PNC analysis)

19

Conclusion

○ JMPscare provides insights into the queue
○ It finds explorable parts of the binary
○ Which helps the tester to improve their harness

Open Source at
https://github.com/fgsect/JMPscare

20

while (questions());

char buf[16];
strncpy(buf, ""
 "Thank you for your attention."
 "\n", sizeof(buf));
printf("%s", buf);

