
Dinosaur Resurrection
PowerPC Binary Patching for

Base Station Analysis

Uwe Müller, Eicke Hauck, Timm Welz, Jiska Classen, Matthias Hollick
Secure Mobile Networking Lab - SEEMOO

Technische Universität Darmstadt, Germany

2

Motivation

3

What is TETRA?

Just the same as GSM but for
emergency communication in Europe.

Stronger encryption
than GSM :)

Group calls

SIM-based
authentication

Walkie-talkie mode
(DMO) and base station

mode (TMO)

Voice + text messages

Separate from other
mobile infrastructure

4

What is PowerPC?

A dating^Wdated computing architecture.

5

PowerPC-based TETRA Base Station

Never gets old!!!1!

1995 1991

6

TETRA Base Station Setup for Testing

Safety measures
● Put everything into an EMF-shielded tent.
● Add a huuuuge dummy load.
● Configure an invalid frequency.
● Only analyze and fuzz local interfaces.

Firmware flashing and control
● Site controller usually offers firmware via TFTP.
● Raspberry Pi replaces TFTP controller.
● Also connect to serial console of the base radio

(bootloader and crash output, local shell).

7

Static
Firmware Analysis

8

Firmware Format

● Base station runs an Enea POLO Bootloader.
● Bootloader gets ELF via TFTP from site controller.
● The ELF can be compressed with gzip.
● The ELF contains symbols! 🎉 🥳 🥂

9

Function Name and Library Analysis

● Operating System Embedded (OSE) 4.5.2,
developed by Enea AB.

● IPCOM network stack by Interpeak AB.
● MPC8260ADS SoC featuring a big-endian

PowerPC CPU.
● Compile dates back from 2006/2007.

10

11

PowerPC Binary Patcher

Let’s patch the firmware using C!

12

PowerPC Assembler Example

● Each function in our target binary starts with the same two position-independent
instructions.

● Replace these with a jump to the actual hook.
● Hooks can be added to the beginning (PRECALL), end (POSTCALL), or replace a

function (REPLACE).

13

14

Demo: Blinking LEDs

15

Dynamic
Firmware Analysis

16

Call Traces

● Replace all functions matching a regular expression with a call trace
instrumentation.

● Log time (execution time and function order) and currently active thread.
● Conversion to Callgrind format, shows time spent in each function.

17

Callgrind Interpretation

18

Interrupt-related Hooks

● Call traces perform very smooth within
most libraries.

● If functions are related to hardware
interrupts, certain PowerPC instructions
cannot be executed.

● This leads to crashes within some
libraries.

19

Patching without Reboots

● Hooks section always ends up at the same address within the patched ELF.
● Comparison based on objdump output is straightforward :)
● We can use this to patch the firmware at runtime.
● Sufficiently stable for most use cases :D

20

Calling Functions During Runtime

● The previous approach still requires firmware recompilation.
● We can add a simple handler that allows calling functions with arguments directly

from the serial command line interface.

21

Fuzzing with Hyphuzz

22

23

Fuzzing the IPCOM Network Stack

24

OSE Error Handlers and Crash Types

● Some crashes do not result in an error. Hard to analyze without emulation etc.
● Other crashes result in crash logs sent to the serial console :)

25

Fuzzing Overhead

26

Q&A

 Twitter: @naehrdine, @seemoolab

 jiska@bluetooth.lol

 https://github.com/seemoo-lab/powerpc-ose

