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Motivation
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What is TETRA?

Just the same as GSM but for 
emergency communication in Europe.

Stronger encryption
than GSM :)

Group calls

SIM-based 
authentication

Walkie-talkie mode 
(DMO) and base station 

mode (TMO)

Voice + text messages

Separate from other
mobile infrastructure
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What is PowerPC?

A dating^Wdated computing architecture.
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PowerPC-based TETRA Base Station

Never gets old!!!1!

1995 1991
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TETRA Base Station Setup for Testing

Safety measures
● Put everything into an EMF-shielded tent.
● Add a huuuuge dummy load.
● Configure an invalid frequency.
● Only analyze and fuzz local interfaces.

Firmware flashing and control
● Site controller usually offers firmware via TFTP.
● Raspberry Pi replaces TFTP controller.
● Also connect to serial console of the base radio

(bootloader and crash output, local shell).
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Static
Firmware Analysis
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Firmware Format

● Base station runs an Enea POLO Bootloader.
● Bootloader gets ELF via TFTP from site controller.
● The ELF can be compressed with gzip.
● The ELF contains symbols! 🎉 🥳 🥂
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Function Name and Library Analysis

● Operating System Embedded (OSE) 4.5.2, 
developed by Enea AB.

● IPCOM network stack by Interpeak AB.
● MPC8260ADS SoC featuring a big-endian 

PowerPC CPU.
● Compile dates back from 2006/2007.
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PowerPC Binary Patcher

Let’s patch the firmware using C!
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PowerPC Assembler Example

● Each function in our target binary starts with the same two position-independent 
instructions.

● Replace these with a jump to the actual hook.
● Hooks can be added to the beginning (PRECALL), end (POSTCALL), or replace a 

function (REPLACE).
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Demo: Blinking LEDs
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Dynamic
Firmware Analysis



16

Call Traces

● Replace all functions matching a regular expression with a call trace 
instrumentation.

● Log time (execution time and function order) and currently active thread.
● Conversion to Callgrind format, shows time spent in each function.
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Callgrind Interpretation
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Interrupt-related Hooks

● Call traces perform very smooth within 
most libraries.

● If functions are related to hardware 
interrupts, certain PowerPC instructions 
cannot be executed.

● This leads to crashes within some 
libraries.
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Patching without Reboots

● Hooks section always ends up at the same address within the patched ELF.
● Comparison based on objdump output is straightforward :)
● We can use this to patch the firmware at runtime.
● Sufficiently stable for most use cases :D
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Calling Functions During Runtime

● The previous approach still requires firmware recompilation.
● We can add a simple handler that allows calling functions with arguments directly 

from the serial command line interface.
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Fuzzing with Hyphuzz
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Fuzzing the IPCOM Network Stack
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OSE Error Handlers and Crash Types

● Some crashes do not result in an error. Hard to analyze without emulation etc.
● Other crashes result in crash logs sent to the serial console :)
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Fuzzing Overhead
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Q&A

      Twitter: @naehrdine, @seemoolab

      jiska@bluetooth.lol

      https://github.com/seemoo-lab/powerpc-ose


